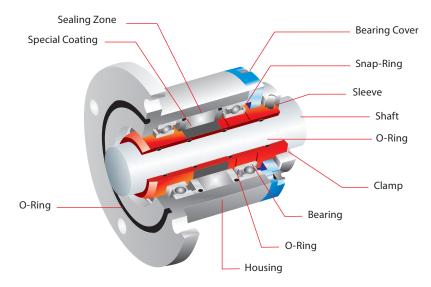


HIGH VACUUM & PRESSURE ROTARY SEALING UNIT

Sealink Corp. is one of the world's leading companies specialized in designing, manufacturing and marketing rotary sealing solutions for vacuum and pressure.

These solutions include rotary feedthroughs, linear feedthroughs, double acting - rotary & linear motion - feedthroughs and rotary unions applied to high vacuum or high pressure process lines. These simplify and further improve the conventional magnetic and mechanical sealing units.

We offer customized sealing units to meet customer's application requirements as well as standard sealing units for a wide range of industries including semiconductor, LCD and OLED industries, pharmaceutical and chemical processing Industries, etc.


All our products are manufactured under strict quality control and in ISO 9001 / ISO 14001 certified manufacturing facility in Korea and we will always continue to improve our present products and technology for further customer satisfaction.

CONTENTS

Sealink Technology ₀₂
Sealink Products
Rotary Feedthrough: RF Type 08
Rotary Union : RU Type 16
Rotary & Linear Feedthrough: RL Type 24
Request Quote 29
Thesis 30

Sealink Technology: Sealing Mechanism

In a successful rotary seal, a thin continuous liquid film, on the order of 1μ m thick and approximately $0.05 \sim 0.1$ mm in axial length, exists between the seal and the rotating shaft. This film prevents mechanical and thermal damage to the seal, and reduces wear and heat generation. Thus, a central objective of a seal design must be the creation of a fluid film with desirable characteristics. The film is kept intact by elevated pressures within the film, which provide the load support necessary to lift the seal off of the shaft. These pressures are hydrodynamically generated by asperities on the seal surface, acting in conjunction with the rotating shaft, which drags fluid past the asperities in the circumferential direction. The asperities therefore act as miniature slide bearings.

It is also well known that the asperities on the seal surface play a dominant role in preventing leakage of fluid through the film. When the shaft rotates, it induces circumferential shear stresses in the film and the seal surface, which deform the seal surface and the asperities. If the seal macro-geometry is designed properly, the deformed asperities act like a shear pump and produce reverse pumping from the air-side of the seal towards the air-side, and prevents leakage. The micro-geometry of the seal surface in the sealing zone is very important. If the surface is very smooth, with very few asperities, then the reverse pumping rate will be insufficient and the seal will not perform well. The macro-geometry of the seal, i.e. the seal cross-section, is another important factor. Asperities on the shaft surface play a secondary role, since the shaft surface becomes polished during the running-in period, and is much smoother than the seal.

The load support mechanism and the reverse pumping mechanism of rotary seal can be modeled by utilizing an elastohydrodynamic analysis which requires a hydrodynamic analysis of the flow in the lubricating film and a deformation analysis of the seal. These two analysis must be coupled since the hydrodynamic analysis yields the pressure and shear stress distribution, which affects the hydrodynamics. This coupling is handled by means of an interactive computation procedure.

The hydrodynamic analysis consists of a numerical solution following the Reynolds equation which governs the flow field in the fluid film, using a mass-conserving algorithm that accounts for cavitation.

$$\frac{\partial}{\partial x} \left(\frac{\mathbf{h}^{3}}{n} \frac{\partial \mathbf{p}}{\partial x} \right) + \lambda^{2} \frac{\partial}{\partial y} \left(\frac{\mathbf{h}^{3}}{n} \frac{\partial \mathbf{p}}{\partial y} \right) = \Lambda \frac{\partial \rho_{h}}{\partial x}$$

The film thickness h can be expressed as:

$$h = \delta + h_n + h_s$$

Where δ denotes average film thickness, hn and hs are film thickness due to normal and shear deformation of seal surface.

The Reynolds equation can be solved using a finite difference scheme and the radial and circumferential seal deformations are computed through a coefficient approach. The couplings between the governing equations are handled by an interactive computational procedure.

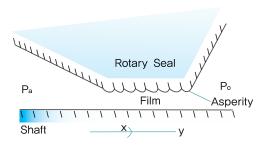
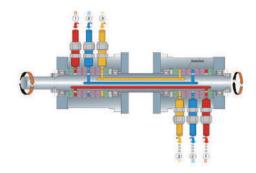
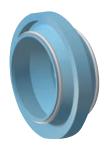
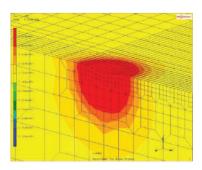
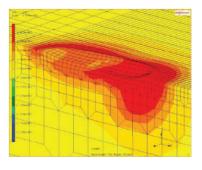
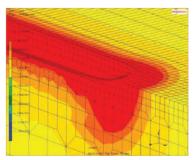




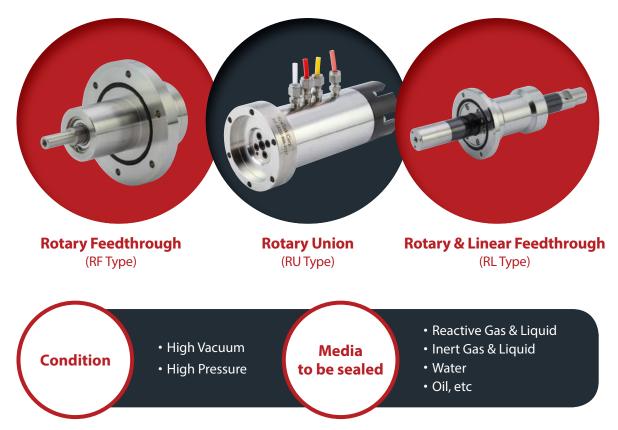
Fig. Schematic diagram of sealing zone






(1) A sample of nonlinear seal profile

(2) 3D shape with shaft



(3) Stress distribution

Sealink Products

Specifications

Rotary, Linear, Rotary & Linear, Co-Axial, Multi-Axial
Reactive Gas, Inert Gas, Water, Oil and other Liquids
$-20 \sim 150$ °C ($-4 \sim +300$ °F) without cooling system
$-20 \sim 400$ °C ($-4 \sim +750$ °F) with optional cooling system
Up to 7.5 x 10 ⁻¹⁰ Pa·m³/s by Helium Leakage Detector
Up to 3.5 x 10 ⁻² bar/min, 0.5 psi/min by Nitrogen gas
Max. 10 ⁻⁸ Torr, Max. 10 ⁻⁶ Pa
Max. 50 bar (PV Limits: Max. 50)
Max. 15 m/s
ø6 ~ ø1,800 mm
Depending on the type and customer's application requirements

Sealink also provides customized products to meet the operating conditions of your devices.

Comparison of Three Types of Sealing Units

Seal Type	Mechanical Seal	Magnetic Seal	Sealink Seal
Theory	Face Contact	Ferrofluid	Nonlinear Contact
Vacuum	X	0	0
Pressure	0	X	0
Gas	X	0	0
Liquid	0	X	0
Lubricant	Required	Not Required	Not Required

All our products are hermetically sealed by our unique sealing technology and operated in dry running condition without buffer fluid reservoir for the lubricants and cooling systems below 150°C/300°F (operable up to 400°C/750°F with optional cooling systems).

And our linear sealing systems do NOT use metallic bellows which result in saving space and cost.

We have PATENTS!

Semiconductor Equipment, LCD and OLED Industries

CVD, MOCVD, LPCVD, PECVD, PCD, ALD, CMP, OLED, LCD device, FPD device, Wafer handling device, Vacuum deposition system, Ion Implanter, Etcher, Asher, Edge Grinder, Scrubber, RTP, Sputter, Lamp device, Autoclave, Wafer robot, etc.

Petrochemical, Fine Chemical, Marine, Steel and General Machinery Industries

Mixer, Agitator, Reactor Vessel, etc.

Sealink Unit: Rotary Feedthrough, RF Type

A rotary feedthrough is a precision mechanical device which allows to transfer rotational motion from atmosphere into vacuum or differential pressure environments.

The rotating components of our rotary feedthroughs are hermetically sealed by our unique sealing technology with nonlinear contact, unlike a face contact of conventional mechanical seals which need lubricant for lowering the frinction. Therefore, Sealink Seals don't need lubricant supplying system and eliminate the risk of explosion caused by a leak of lubricant.

We provide standard rotary feedthroughs with solid or hollow shaft and customized products with various options such as pressure, vacuum, speed, and temperature requirements. Therefore, you can retrofit conventional feedthroughs with Sealink's products without extra equipment.

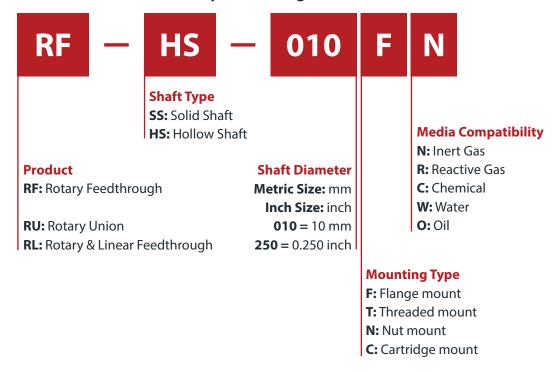
Our hollow shaft type rotary feedthroughs are suitable for applications that require the use of a non-magnetic shaft or a shaft having a special shape such as tube, drive shaft or the like.

Advantages

- Hermetically sealed with our unique and most advanced sealing technology
- · Being able to operate under both high vacuum and high pressure environments
- A variety of media to be sealed: Both gas and liquid such as reactive gas, inert gas, chemical, oil, water and coolants, etc.
- No Cooling Unit required up to 150°C/300°F (Operable up to 400°C/750°F with cooling system).
- · No Lubricant Supply required, resulting in eliminating explosion accidents by leaks of lubricating oil
- Compact and Simple Construction
- Solid shaft and Hollow shaft types available
- · Customized design available
- Optional Real-time Leakage Monitoring system available

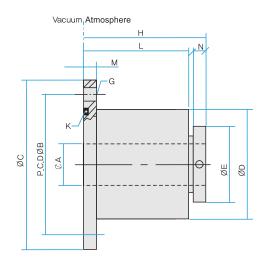
Typical Applications

Semiconductor Equipment, LCD and OLED Industries


CVD, MOCVD, LPCVD, PECVD, PCD, ALD, CMP, OLED, LCD device, FPD device, Wafer handling device Vacuum deposition system, Ion Implanter, Etcher, Asher, Edge Grinder, Scrubber, RTP, Sputter, Lamp device, Autoclave, Wafer robot, etc.

Petrochemical, Fine Chemical, Marine, Steel and General Machinery Industries Mixer, Agitator, Reactor Vessel, etc.

Specifications


Vacuum		Max. 10 ⁻⁸ Torr, Max. 10 ⁻⁶ Pa				
Pressure		Max. 50 bar (PV Limits : Max. 50)				
Leakage	Vacuum	Up to 7.5 x 10 ⁻¹⁰ Pa⋅m³/s by Helium Leak Detector				
Rate	Pressure	Up to 0.5 psi/min by Nitrogen Gas				
Temperat	ure Range	$-20 \sim 150$ °C ($-4 \sim +300$ °F) without cooling system $-20 \sim 400$ °C ($-4 \sim +750$ °F) with optional cooling system				
Media Typ	oe .	Gas and Liquid (Reactive Gas, Inert Gas, Water, Oil, Steam, Air, Chemical, Coolant, and a variety of other media)				
Speed		Max. 15 m/s				
Shaft Diar	meter	ø6 ~ ø1,200mm				
Housing		304 or 316L Stainless Steel or others				
Material	Shaft	304 or 316L Stainless Steel or others				
	Bearing	SUJ2 High Carbon Chrome Bearing Steel or others				

Model Numbers of Rotary Feedthroughs

■ RF-HS-F series Hollow Shaft Rotary Feedthrough (Flange Mount)

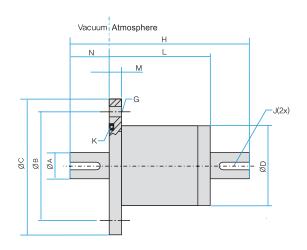
Inch Sizes

Model No.	ØA	ØB	øс	ØD	н	L	М	N	G	K
RF-HS-250FN	0.250	2.312	2.73	1.50	4.06	2.56	0.5	0.75	0.265	O-Ring
RF-HS-375FN	0.375	2.312	2.73	1.50	4.56	3.06	0.50	0.75	0.265	O-Ring
RF-HS-500FN	0.500	4.750	6.00	2.87	6.03	3.56	0.38	1.25	0.750	O-Ring
RF-HS-750FN	0.750	4.750	6.00	2.87	6.03	3.562	0.38	1.218	0.750	O-Ring

Model No.	ØA	ØB	ØС	ØD	ØE	н	L	М	N	G	К
RF-HS-010FN	10	70	90	51	34	78	64	10	10	4- Ø10	O-Ring
RF-HS-020FN	20	85	105	63	44	82.5	68.5	10	10	4- Ø10	O-Ring
RF-HS-025FN	25	100	120	71	49	88	74	10	10	4- Ø10	O-Ring
RF-HS-030FN	30	100	120	78	54	93	79	10	10	4- Ø10	O-Ring
RF-HS-040FN	40	120	145	90	69	96	80	10	10	4- Ø12	O-Ring
RF-HS-050FN	50	135	160	103	79	98	82	12	12	4- Ø12	O-Ring
RF-HS-075FN	75	185	210	143	109	115	96	12	12	4- Ø12	O-Ring

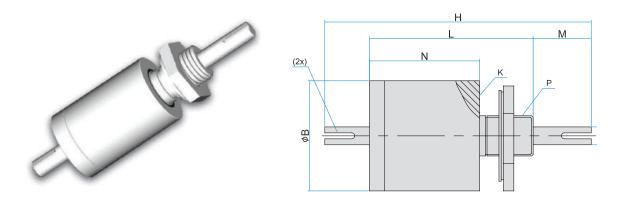
 $[\]mbox{*}$ Shaft tolerance is h8 by ISO 286 / BS 4500

■ RF-HS-F series



Model No.	ØA	ØB	ØС	ØD	L	н
RF-HS-040FN	40	91	110	175	115	165
RF-HS-050FN	50	107	176	240	115	175
RF-HS-060FN	60	120	176	240	125	195
RF-HS-080FN	80	149	204	275	140	215
RF-HS-100FN	100	174	234	305	140	230
RF-HS-125FN	125	199	260	330	160	255
RF-HS-140FN	140	218	313	395	170	275
RF-HS-160FN	160	237	313	395	170	275
RF-HS-180FN	180	263	364	445	190	300
RF-HS-200FN	200	288	364	445	190	320
RF-HS-220FN	220	326	422	505	200	335

■ RF-SS-F series Solid Shaft Rotary Feedthrough (Flange Mount)

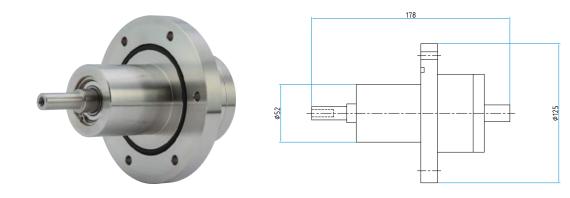


Inch Sizes

Model No.	ØA	ØB	ØС	ØD	Н	L	М	N	G	J	К
RF-SS-250FN	0.250	2.312	2.73	1.50	4.06	2.56	0.5	0.75	0.265	0.030dx40L(flat)	O-Ring
RF-SS-375FN	0.375	2.312	2.73	1.50	4.56	3.06	0.50	0.75	0.265	0.030dx40L(flat)	O-Ring
RF-SS-500FN	0.500	4.750	6.00	2.87	6.03	3.56	0.38	1.25	0.750	0.126wx0.77dx1.0L	O-Ring
RF-SS-750FN	0.750	4.750	6.00	2.87	6.03	3.562	0.38	1.218	0.750	0.188wx0.114dx10L	O-Ring

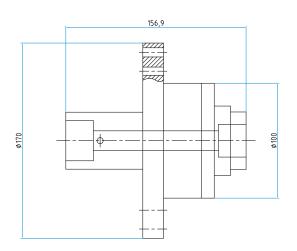
Model No.	ØA	ØB	ØС	ØD	н	L	M	N	G	J	K
RF-SS-006FN	6	60	80	38	97.5	57.5	10	20	4- Ø 10	0.5d x 12L(Flat)	O-Ring
RF-SS-010FN	10	60	80	44	119.5	69.5	10	25	4- Ø 10	3w x 1.8d x 14L	O-Ring
RF-SS-012FN	12	70	90	48	133.5	73.5	10	30	4- Ø 10	4W x 2.5d x 20L	O-Ring
RF-SS-020FN	20	85	105	63	151.5	81.5	10	35	4- Ø 10	6W x 3.5d x 25L	O-Ring
RF-SS-030FN	30	135	160	105	220	140	20	40	4- Ø 12	10w x 5d x 30L	O-Ring
RF-SS-040FN	40	156	188	116	312.5	152.5	20	80	6- Ø 12	12W x 5d x 40L	O-Ring
RF-SS-050FN	50	185	225	145	373.5	173.5	20	100	6- Ø 12	15w x 5d x 50L	O-Ring

■ RF-SS-T Series Solid Shaft Rotary Feedthrough (Threaded Mount)

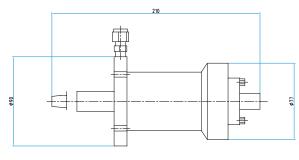

Inch Sizes

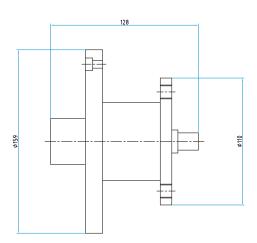
Model No.	ØA	ØB	н	L	М	N	Р	J	K
RF-SS-188TN	0.1875	0.63	2.562	1.58	0.50	1.3	5/16-24 UNF-2A	0.030dx0.37L(flat)	O-Ring
RF-SS-250TN	0.250	0.75	3.437	1.937	0.75	1.562	7/16-20 UNF-2A	0.030dx0.40L(flat)	O-Ring
RF-SS-500TN	0.500	2.87	8.812	5.072	2.49	3.562	1"-14 UNS-2A*	0.126wx0.77dx1.0L	O-Ring
RF-SS-750TN	0.75	2.87	8.812	5.072	2.49	3.562	1"-14 UNS-2A*	0.188wx0.114dx1.0L	O-Ring

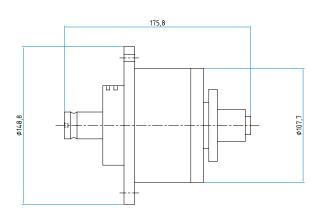
Model No.	ØA	ØB	н	L	М	N	P	J	K
RF-SS-004TN	4	21	76.5	46.5	15	36.5	M12x1.5	0.5dx10L(flat)	O-Ring
RF-SS-005TN	5	21	76.5	46.5	15	36.5	M12x1.5	0.5dx10L(flat)	O-Ring
RF-SS-006TN	6	21	76.5	46.5	15	36.5	M12x1.5	0.5dx10L(flat)	O-Ring
RF-SS-012TN	12	48	179	109	40	74	M25x1.5	4Wx2.5dx20L	O-Ring
RF-SS-020TN	20	63	211	121	55	82	M30x1.5	6Wx3.5dx25L	O-Ring

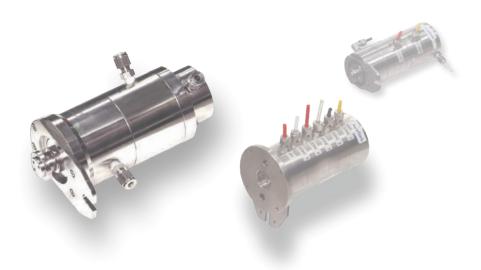

■ New Products

RF-SS-F Series


RF-HS-F Series


RF-SS-F Series


RF-SS-F Special



RF-SS-F Special

For CMP

Rotary Union: RU Type

A rotary union is a precision mechanical device which allows to transfer fluid (liquid or gaseous media) under vacuum or differential pressure environments from a stationary source to a rotating part of machinery, preserving and isolating the fluid connection.

The rotating components of our rotary unions are hermetically sealed by our unique sealing technology with nonlinear contact for low friction, unlike a face contact of conventional mechanical seals which need lubricating oil for lowering the friction. Therefore, Sealink Seals don't need lubricant supplying systems and eliminate the risk of explosion caused by a leak of lubricant.

We provide standard rotary unions with single- or multiple-independent flow channels and transfer different type of media-both liquid and gases-simultaneously. We also provide customized products with various options such as pressure, vacuum, speed, number of ports and temperature requirements. Therefore, you can retrofit conventional feedthroughs with Sealink's products without extra equipment.

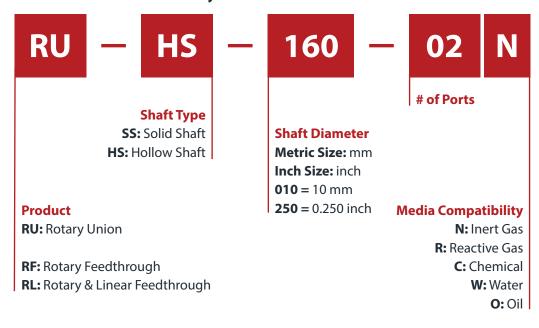
Advantages

- Hermetically sealed with our unique non-linear contact technology
- Being able to operate under both high vacuum and high pressure environments
- A Variety of media to be sealed: Both gas and liquid such as reactive gas, inert gas, chemical, oil, water and coolants, etc.
- No Cooling Unit required up to 150°C/300°F (Operable up to 400°C/750°F with cooling system).
- · No Lubricant Supply required, resulting in eliminating explosion accidents by leaks of lubricating oil
- Compact and Simplified Construction Easy machining and maintenance, long service life and installation space saved
- Solid shaft and Hollow shaft types available
- Customized design available
- Optional Real-time Leakage Monitoring system available

Typical Applications

Semiconductor Equipment, LCD and OLED Industries

CVD, MOCVD, LPCVD, PECVD, PCD, ALD, CMP, OLED, LCD device, FPD device, Wafer handling device, Vacuum deposition system, Ion Implanter, Etcher, Asher, Edge Grinder, Scrubber, RTP, Sputter, Lamp device, Autoclave, Wafer robot, etc.


Petrochemical, Fine Chemical, Marine, Steel and General Machinery Industries Mixer, Agitator, Reactor Vessel, etc.

Specifications

Vacuum		Max. 10 ⁻⁸ Torr, Max. 10 ⁻⁶ Pa						
Pressure		Max. 50 bar (PV Limits: Max. 50)						
Leakage	Vacuum	Up to 7.5 x 10 ⁻¹⁰ Pa·m³/s by Helium Leak Detector						
Rate Pressure		Up to 0.5 psi/min by Nitrogen Gas						
Number o	of Ports	1 ~ 14 ports						
Temperat	ure Range	$-20 \sim 150^{\circ}$ C ($-4 \sim +300^{\circ}$ F) without cooling system $-20 \sim 400^{\circ}$ C ($-4 \sim +750^{\circ}$ F) with optional cooling system						
Media Typ	oe .	Gas and Liquid (Reactive Gas, Inert Gas, Water, Oil, Steam, Air, Chemical, Coolant, and a variety of other media)						
Speed		Max. 15 m/s						
Shaft Diar	meter	ø15 ~ ø1,100mm						
	Housing	304 or 316L Stainless Steel or others						
Material	Shaft	304 or 316L Stainless Steel or others						
	Bearing	SUJ2 High Carbon Chrome Bearing Steel or others						

^{*} Applications with operating temperatures above 150°C require a cooling system

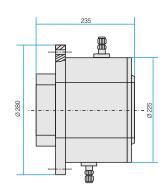
Model Numbers of Rotary Unions

■ RU-HS Series Hollow Shaft Rotary Union

RU-HS-160-02N/C/W/O

2-Passage Hollow Shaft Rotary Union

Number of Port 2 Ports


MediaInert Gas, Chemical, Oil, Water, etcTemperature $-20^{\circ}\text{C} \sim 150^{\circ}\text{C} (-4^{\circ}\text{F} \sim 300^{\circ}\text{F})$

Speed 100 rpm Pressure 12 Bar

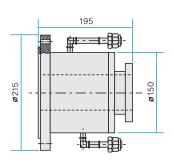
Leakage Rate 0.5 psi/min by Nitrogen Gas

Connection Size 1/2" NPT. Other sizes available upon request

RU-HS-080-02N/C/W/O

2-Passage Hollow Shaft Rotary Union

Number of Port 2 Ports


MediaInert Gas, Chemical, Oil, Water, etcTemperature $-20^{\circ}\text{C} \sim 150^{\circ}\text{C} (-4^{\circ}\text{F} \sim 300^{\circ}\text{F})$

Speed50 rpmPressure10 Bar

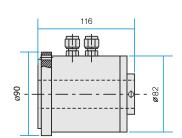
Leakage Rate 0.5 psi/min by Nitrogen Gas

Connection Size 1/4" NPT. Other sizes available upon request

RU-HS-030-02N/C/W/O

2-Passage Hollow Shaft Rotary Union

Number of Port 2 Ports


MediaInert Gas, Chemical, Oil, Water, etcTemperature 0° C $\sim 150^{\circ}$ C (32° F $\sim 300^{\circ}$ F)

Speed100 rpmPressure30 psi

Leakage Rate 0.5 psi/min by Nitrogen Gas

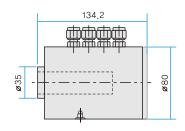
Connection Size 1/4" NPT. Other sizes available upon request

● RU-HS-035-04N/R/W/O

4-Passage Hollow Shaft Rotary Union

Number of Port 4 Ports

Media Inert Gas, Reactive Gas, Oil, Water, etc


Temperature $-20^{\circ}\text{C} \sim 150^{\circ}\text{C} (-4^{\circ}\text{F} \sim 300^{\circ}\text{F})$

Speed 350 rpm Pressure 150 psi

Leakage Rate 0.5 psi/min by Nitrogen Gas

Connection Size 1/4" NPT. Other sizes available upon request

● RU-HS-050-05R/N/W/O

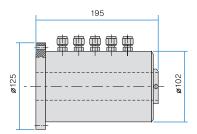
5-passage Hollow Shaft Rotary Union

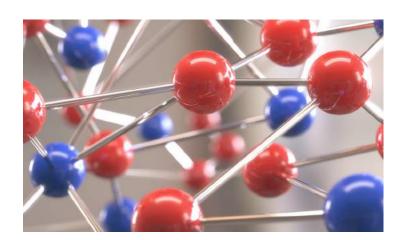
Number of Port 5 Ports

Media Inert Gas, Reactive Gas, Oil, Water, etc

Temperature $0^{\circ}\text{C} \sim 120^{\circ}\text{C} (32^{\circ}\text{F} \sim 250^{\circ}\text{F})$

 Speed
 350 rpm


 Vacuum
 1 x 10⁻³ Torr


 Pressure
 35 psi

Leakage Rate 0.5 psi/min by Nitrogen Gas

Connection Size 1/4" NPT. Other sizes available upon request

■ RU-SS Series Solid Shaft Rotary Union

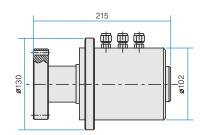
RU-SS-050-03R/N

3-Passage Solid Shaft Rotary Union

Number of Port 3 Ports

MediaReactive Gas, Inert GasTemperature $-20^{\circ}\text{C} \sim 150^{\circ}\text{C} (-4^{\circ}\text{F} \sim 300^{\circ}\text{F})$

 Speed
 200 rpm


 Vacuum
 1 x 10⁻³ Torr

 Pressure
 35 psi

Leakage Rate Up to 7.5 x 10⁻¹⁰ Pa·m³/s

Connection Size 1/2" NPT. Other sizes available upon request

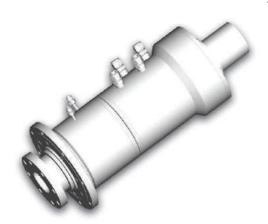
RU-HS-110-06N/W

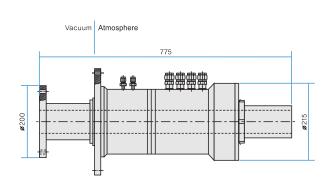
6-Passage Hollow Shaft Rotary Union

Number of Port 6 Ports

Media Inert Gas, Water

Temperature $0^{\circ}\text{C} \sim 150^{\circ}\text{C} (32^{\circ}\text{F} \sim 300^{\circ}\text{F})$

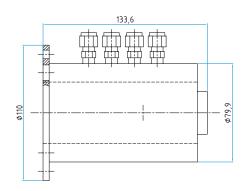

 Speed
 20 rpm


 Vacuum
 1 x 10⁻³ Torr

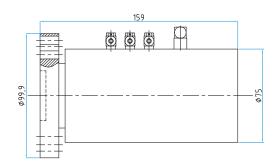
 Pressure
 10 Bar

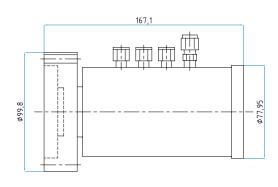
Leakage Rate (Pressure) 0.5 psi/min by Nitrogen gas **Leakage Rate (Vacuum)** Up to 7.5 x 10⁻¹⁰ Pa·m³/s

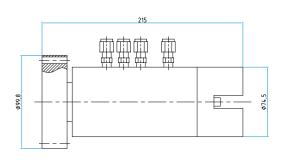
Connection Size 1/4" & 1/2" NPT. Other sizes available upon request

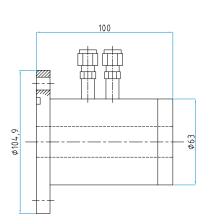


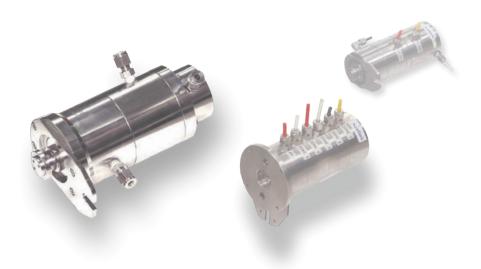
■ New Products


● RU-SS-030-04W


● RU-SS-030-04N/W/C


● RU-SS-030-04N/W/O


● RU-SS-030-04N/W



● RU-HS-025-02N/R

For CMP

Rotary & Linear Feedthrough: RL Type

A rotary & linear feedthrough is a precision mechanical device which allows to transfer both linear and rotational motions at same time from atmosphere into vacuum or differential pressure environments.

The rotary & linear feedthroughs are hermetically sealed by our unique sealing technology with nonlinear contact for low friction, unlike a face contact of conventional mechanical seal which need lubricating oil for lowering the friction. Therefore, Sealink Seals don't need lubricant supplying systems and eliminate the risk of explosion caused by a leak of lubricant.

We provide standard rotary & linear feedthroughs and customized products with various options such as pressure, vacuum, stroke, speed, and temperature requirements. Therefore, you can retrofit conventional feedthroughs with Sealink's products without extra equipment.

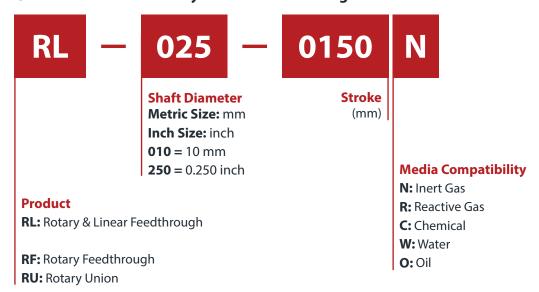
Advantages

- Hermetically sealed with our unique nonlinear contact technology with no bellows
- Being able to operate under both high vacuum and high pressure environments
- A variety of media to be sealed: Both gas and liquid such as reactive gas, inert gas, chemical, oil, water and coolants, etc.
- 360° continuous rotating and up to 4,000mm linear travel
- No Cooling Unit required up to 150°C/300°F (operable up to 400°C/750°F with cooling system)
- No Lubricant Supply required, resulting in eliminating explosion accidents by leaks of lubricating oil
- Compact and Simplified Construction Easy machining and maintenance, long service life and installation space saved
- Customized design available
- Optional Real-time Leakage Monitoring system available

Typical Applications

Semiconductor Equipment, LCD and OLED Industries

CVD, MOCVD, LPCVD, PECVD, PCD, ALD, CMP, OLED, LCD device, FPD device, Wafer handling device, Vacuum deposition system, Ion Implanter, Etcher, Asher, Edge grindr, Scrubber, RTP, Sputter, Lamp device, Autoclave, Wafer robot, etc.


Petrochemical/Fine Chemical, Marine, Steel and General Machinery Industries

Mixer, Agitator, Reactor Vessel, etc

Specifications

Vacuum		Max. 10 ⁻⁸ Torr, Max. 10 ⁻⁶ Pa			
Pressure		Max. 50 bar (PV Limits : Max. 50)			
Leakage	Vacuum	Up to 7.5 x 10 ⁻¹⁰ Pa·m³/s by Helium Leak Detector			
Rate	Pressure	Up to 0.5 psi/min by Nitrogen Gas			
Stroke of Shaft		0 to 4,000mm			
Temperature Range		$-20 \sim 150^{\circ}\text{C}$ (-4 $\sim +300^{\circ}\text{F}$) without cooling system $-20 \sim 400^{\circ}\text{C}$ (-4 $\sim +750^{\circ}\text{F}$) with optional cooling system			
Media Type		Gas and Liquid (Reactive Gas, Inert Gas, Water, Oil, Steam, Air, Chemical, Coolant, and a variety of other media)			
Speed		Max. 15 m/s			
Shaft Diameter		ø6 ~ ø1,100mm			
Material	Housing	304 / 316L Stainless Steel or others			
	Shaft	304 / 316L Stainless Steel or others			
	Bearing	SUJ2 High carbon Chrome Bearing Steel or others			

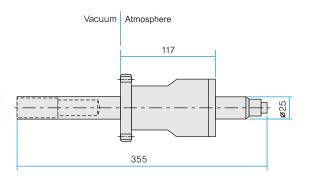
Model Names of Rotary & Linear Feedthroughs

■ Rotary & Linear Feedthrough

RL-025-0150R/N

Rotary & Linear Feedthrough

Gas Compatibility Reactive Gas, Inert Gas


Rotating Speed 120 rpm Linear Speed 20 mm/s Stroke 150 mm

Temperature $0^{\circ}\text{C} \sim 150^{\circ}\text{C} (32^{\circ}\text{F} \sim 300^{\circ}\text{F})$ without cooling

system,

up to 400°C (750°F) with optional cooling system

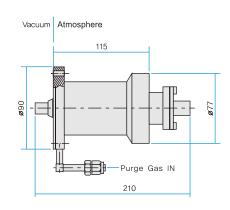
Leakage Rate Up to 7.5 x 10⁻¹⁰ Pa·m³/sec

RL-012-0050R/N

Rotary & Linear Feedthrough

Gas Compatibility Reactive Gas, Inert Gas

Rotating Speed 60 rpm Linear Speed 5 mm/s Stroke 50 mm


Temperature $0^{\circ}\text{C} \sim 150^{\circ}\text{C} (32^{\circ}\text{F} \sim 300^{\circ}\text{F})$ without cooling

system,

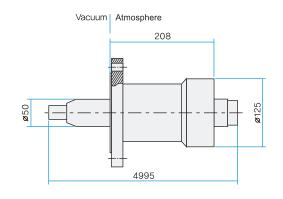
up to 400°C (750°F) with optional cooling system

Leakage Rate Up to 7.5 x 10⁻¹⁰ Pa·m³/sec

RL-050-4000R/N

Rotary & Linear Feedthrough

Gas Compatibility Reactive Gas, Inert Gas


Rotating Speed 120 rpm Linear Speed 50 mm/s Stroke 4,000 mm

Temperature $0^{\circ}\text{C} \sim 150^{\circ}\text{C} (32^{\circ}\text{F} \sim 300^{\circ}\text{F})$ without cooling

system,

up to 400°C (750°F) with optional cooling system

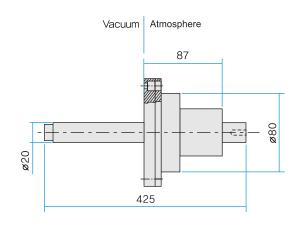
Leakage Rate Up to 7.5 x 10⁻¹⁰ Pa·m³/sec

RL-020-0250R/N

Rotary & Linear Feedthrough

Gas Compatibility Reactive Gas, Inert Gas

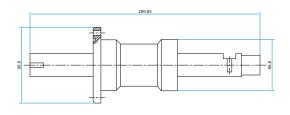
Rotating Speed50 rpmLinear Speed50 mm/sStroke250 mm


Temperature $0^{\circ}\text{C} \sim 150^{\circ}\text{C} (32^{\circ}\text{F} \sim 300^{\circ}\text{F})$ without cooling

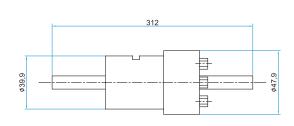
system,

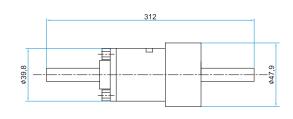
up to 400°C (750°F) with optional cooling system

Leakage Rate Up to 7.5 x 10⁻¹⁰ Pa·m³/sec

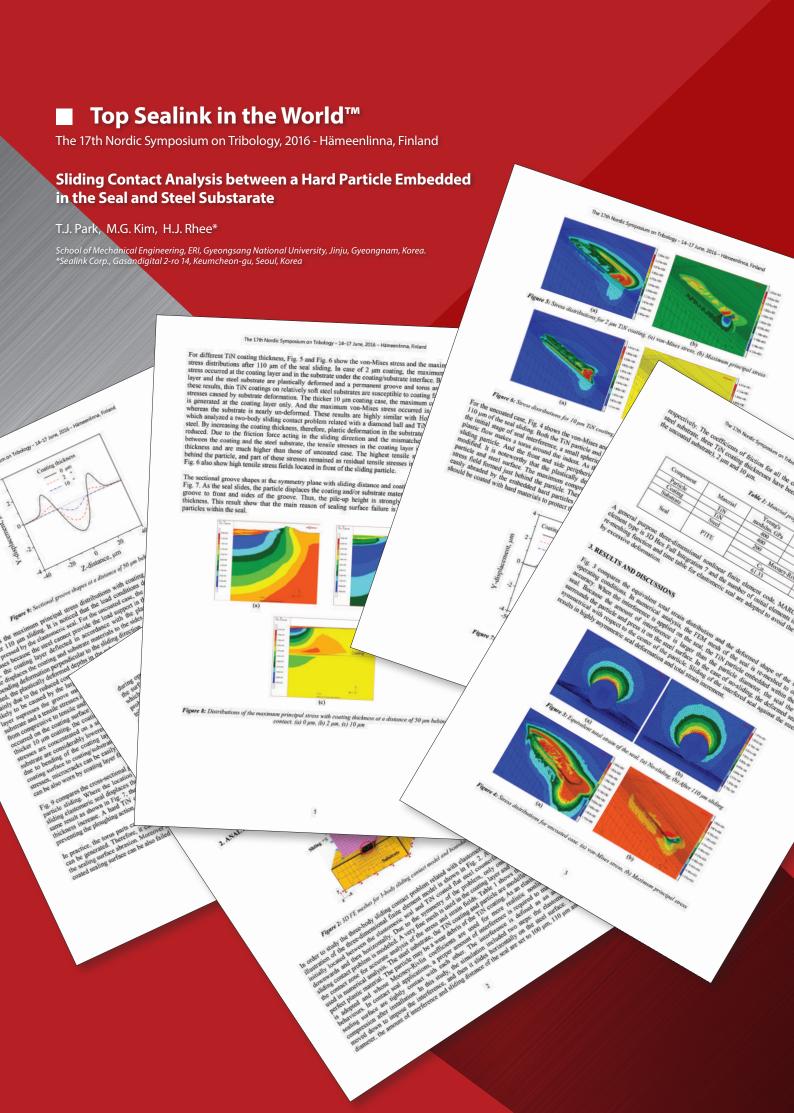


■ New Products


● RL-SS-030-0150C

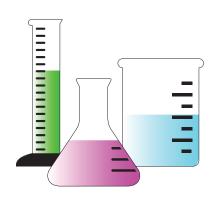

● RL-SS-010-0250N

● RL-SS-010-0250N/R



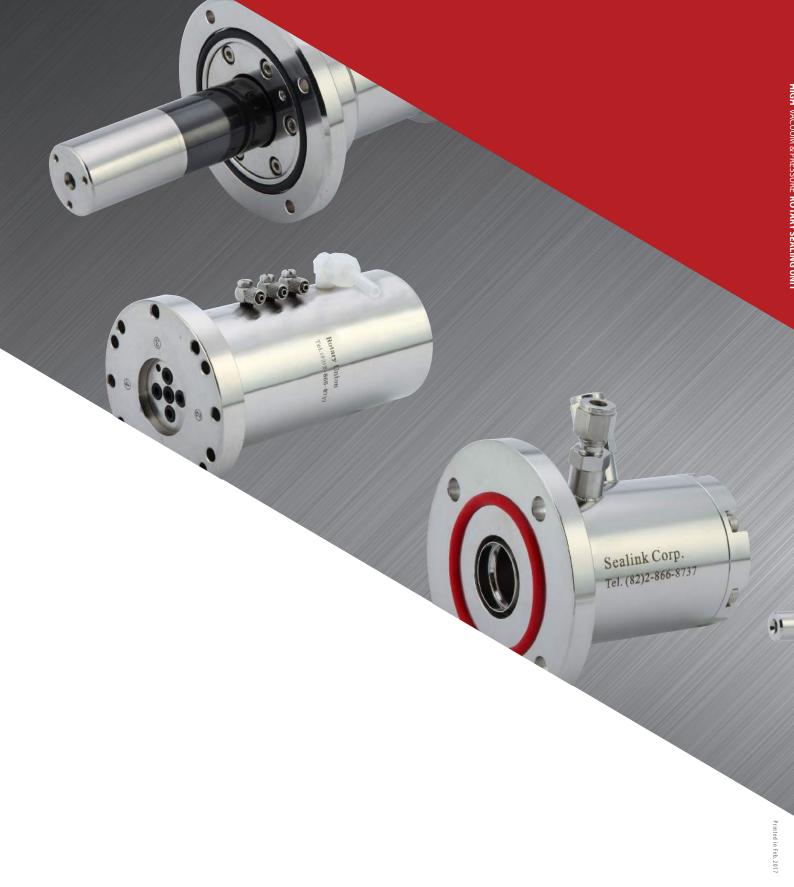
Request for Quotation

Please complete the form below. We will get back to you shortly with sealing solutions that are suitable to your application.


Customer (Contact I	nformation									
Company											
Contact Name		Title/Department									
Address											
Phone Number											
Fax Number					Email Address						
A. Information	on your equi	pment to use mechanic	cal fee	dthroughs or re	otary unions		1				
Equipment											
Manufacturer					Model / Type						
B. Mechanical Feedthroughs		and Rotary Unions being used now (if known)									
Manufacturer											
Model / Type					Quantity used	d now					
If any problem,	please descr	ibe:									
Operational Condit		ions □ Rotary Union □ Rotary Feedthrough □ Linear Feedthrough □ Rotary & Linear									
Sealing Condition		□ Vacuum	□ Pre						· ·		
Media		□ Inert Gas □ Reactive Gas □ Water □ Steam □ Hydraulic Oil □ Hot Oil □ Other (specify:)		
Shaft		□ Solid Shaft □ Hollow Shaft									
Mounting		□ Flange mount □ Threaded(Nose) mount □ Threaded Body(Nut) mount □ Other									
Mounting Direc	tion	□ Vertical Top □ Vertical Bottom □ Vertical □ Horizontal □ Angle(degree)							egree)		
# of Flow Passage				Ports	Liquid Ports			Other Ports			
Stroke (Linear)		()	□ mm □ inch	ı						
Vacuum		Minimum		Opera	Operating		Maximum		Unit		
vacuum									□ Torr	□ Pa	□ psi
Pressure									□ Bar	□ Pa	□ psi
Temperature									□°C	□°F	
Speed (Rotation	1)	() rpm									
Speed (Linear)		() mm/s									
Limits											
Shaft Diameter		Solid Shaft : () mm							
Jilait Diametel		Hollow Shaft : Outer - () mm, Inner - () mm									
Max. Torque Capacity		() N.m									
Leakage Rate	Vacuum	(1 ³ /S								
	Pressure	() psi/r	min							
Shaft Friction											
Gland Length		() mr	n							
Performan	ce										
Life Cycle											
Shaft Runout					Eccentricity						

^{*} If you have, please attach drawing or layout design and send to Sealink Corp. Fax +82-2-866-8757 / e-mail: info@esealink.com

Chemical Resistance Test Results of Sealink Seal


No.	Chemicals	% ⁽¹⁾ No.		Chemicals	%
1	Sulfuric Acid, 75%	0.77	9	Toluene, 99.5%	1.36
2	Sulfuric Acid, 10%	0.12	10	Methanol, 99.5%	0.96
3	Nitric Acid, 40%	0.17	11	Ethanol, 96%	0.75
4	Hydrochloric Acid, 10%	0.17	12	Sodium Carbonate, 20%	0.30
5	Acetic Acid, 99.5%	2.18	13	Sodium Chloride, 10%	0.20
6	Sodium Hydroxide, 40%	0.54	14	Diethyl Ether, 100%	0.66
7	Sodium Hydroxide, 1%	0.63	15	Hydrogen Peroxide, 30%	0.23
8	Acetone, 100%	2.02			
		•	•		

(1)%: Weight Change Ratio
This data was measured by KSM ISO 175:2011 for 168hrs(7days) at Korea Testing & Research Institute.

Note

Sealink Corp. #704, 14 Gasandigital 2-ro, Keumcheon-Gu, Seoul 08592, Korea
Tel +82-2-866-8737 Fax +82-2-866-8757 E-mail info@esealink.com www.esealink.com

